Field Evaluation Shinyei Technology PM Sensor Evaluation Kit

Background

- From 02/05/2015 to 04/08/2015, three Shinyei Technology PM Sensor
 Evaluation Kit units were deployed at one of our monitoring stations in Rubidoux,
 CA, and run side-by-side with two Federal Equivalent Method (FEM) instruments
 measuring the same pollutant
- PM Sensor Eval Kit (3 units tested):
 - ➤ Particle sensors (optical; non-FEM)
 - ➤ Each unit measures: PM_{2.5} (ug/m³) Unit cost: ~\$1,000
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: SHN #1, SHN #2, SHN #3

- MetOne BAM (reference method):
 - ➤ Beta-attenuation monitor (FEM)
 - ➤ Measures PM2₅
 - ➤ Cost: ~\$20,000
 - ➤ Time resolution: 1-hr
- GRIMM (reference method):
 - ➤ Optical particle counter (FEM)
 - ➤ Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ from particle number measurements
 - ➤ Cost: ~\$25,000 and up
 - ➤ Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} from all three units was >99%

Shinyei Sensors; intra-model variability

 Low measurement variations were observed between the three Shinyei devices tested

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} from all three units was >99%

Equivalent Methods: BAM vs GRIMM

Very good correlation between the two equivalent methods

Shinyei PM Sensor Eval Kit vs FEM BAM (PM_{2.5}; 1-hr mean)

 All PM_{2.5} measurements correlate well with the corresponding FEM BAM data (R²>0.81)

Shinyei PM Sensor Eval Kit vs FEM BAM (PM_{2.5}; 24-hr mean)

 All PM_{2.5} measurements correlate very well with the corresponding FEM BAM data (R²>0.92)

Shinyei PM Sensor Eval Kit vs FEM GRIMM (PM_{2.5}; 5-min mean)

 All PM_{2.5} measurements correlate very well with the corresponding FEM GRIMM data (R²>0.88)

Shinyei PM Sensor Eval Kit vs FEM GRIMM (PM_{2.5}; 1-hr mean)

 All PM_{2.5} measurements correlate very well with the corresponding FEM GRIMM data (R²>0.91)

Shinyei PM Sensor Eval Kit vs FEM GRIMM (PM_{2.5}; 24-hr mean)

 All PM_{2.5} measurements correlate very well with the corresponding FEM GRIMM data (R2>0.94)

Discussion

- Overall, the three Shinyei Sensors performed very well and showed:
 - ➤ No down time over a period of about two months
 - Low intra-model variability
 - ➤ Good correlation to substantially more expensive FEM instruments (BAM and GRIMM)
- Shinyei data was usually overestimated, although no sensor calibration was performed prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors over different / more extreme environmental conditions
- All results are preliminary